WSU Team Leads National Effort to Build “Breeding Roadmap” for Raspberries

PUYALLUP, Wash. – It takes a long time – 14 years on average – to develop a new cultivar of red raspberry using traditional methods, and even then, breeders can’t always accomplish what growers and consumers want. Understanding consumer and grower needs and refining breeding processes to develop cultivars that meet those needs is the focus of a new nationwide grant being led by Washington State University.

Scientists at WSU Puyallup and on the Pullman campus have received a $50,000 planning grant from the U.S. Department of Agriculture’s Specialty Crops Research Initiative to lead a team of researchers throughout the United States and Canada in gathering grower input. They’ll ask what the next cultivars of red raspberry should look like in terms of yields, fruit size, firmness, disease susceptibility and machine harvestability, among other things, and what they should taste like. The information they gather will set the stage for a much larger grant to actually bring the latest genomics and genetics research to bear on developing those cultivars.

WSU Scientist Patrick Moore. Click on image for high resolution version.

“Taking the time to listen to consumer and grower needs and map out a plan absolutely will help speed up raspberry breeding,” said researcher Patrick Moore, a scientist stationed at WSU Puyallup, “but perhaps more importantly, we’ll be more likely to come up with the things we really need and want out of future cultivars. We’ll have a better product.”

Moore, along with Associate Professor and Sensory Scientist Carolyn Ross and Extension Specialist Catherine Daniels, will work with counterparts at Salve Regina University, University of Illinois, Brigham Young University, North Carolina State University, Cornell, USDA’s Agricultural Research Service and Agriculture and Agri-Food Canada to systematically seek and analyze input from red raspberry growers, processors and consumers. The first of those listening sessions/workshops will be held in Ohio in January.

One aspect of the sessions will be discussion of some of the costliest pests of red raspberries, such as root rot, raspberry bushy dwarf virus and nematodes. “All of these diseases are tailor-made to be addressed by the latest molecular techniques in use,” Moore said.

He noted that the team will work closely with currently funded efforts, such as USDA’s RosBREED project.  RosBREED, a nationwide project that includes other WSU scientists, is focusing on marker-assisted breeding in Rosaceaous crops such as apples, peaches, cherries and strawberries. Red raspberries, a part of the Rosaceae family, were not included in the RosBREED grant. “We will be working to develop similar techniques to RosBREED’s only tailored for red raspberries,” he said. “We want to complement their work and coordinate whenever possible.”